Connect with us

Education

Laboratory Solar Flares Reveal Clues to Mechanism Behind Bursts of High-Energy Particles

Simulating solar flares on a scale the size of a banana, researchers at Caltech have parsed out the process by which these massive explosions blast potentially harmful energetic particles and X-rays into the cosmos.

Corona loops are arches of plasma that protrude from the surface of the sun, aligned along magnetic field lines. The magnetic field lines act like highways for charged particles, guiding the motion of the electrons and ions that comprise plasma. The loops, which may project 100,000 kilometers above the sun’s surface, can persist for minutes to hours. The loops usually grow and evolve slowly but sometimes can abruptly blast a tremendous amount of energy—billions of times stronger than the most powerful nuclear explosion on Earth—into space. This sudden blast of energy is called a solar flare.

Some of the energy in the flare takes the form of charged particles and “hard X-rays,” which are high-energy electromagnetic waves like those used to image bones in a doctor’s office. The Earth’s own magnetic field and atmosphere act as a shield that protects life on the surface from getting cooked by these torrents of energy, but they have been known to disrupt communications and power grids. They also pose an ongoing threat to spacecraft and astronauts in space.

While the fact that solar flares generate energetic particles and X-ray bursts has long been known, scientists are only starting to piece together the mechanism by which they do so.

Researchers have two options for deciphering how and why the loops form and change. The first is to observe the sun and hope to capture the phenomenon in sufficiently fine detail to yield relevant information. The second is to simulate the loops in a lab. Caltech’s Paul Bellan, professor of applied physics, chose the latter.

In a lab on the first floor of the Thomas J. Watson, Sr., Laboratories of Applied Physics on Caltech’s campus, Bellan built a vacuum chamber with twin electrodes inside. To simulate the phenomenon, he charged a capacitor with enough energy to run the City of Pasadena for a few microseconds, then discharged it through the electrodes to create a miniature solar corona loop.

Each loop lasts about 10 microseconds, and has a length of about 20 centimeters (cm) and a diameter of about 1 cm. But structurally, Bellan’s loops are identical to the real thing, offering he and his colleagues the opportunity to simulate and study them at will.

“Each experiment consumes about as much energy as it takes to run a 100-watt lightbulb for about a minute, and it takes just a couple minutes to charge the capacitor up,” says Bellan, the senior author of a new paper on solar flares that published on April 6 in Nature Astronomy. Bellan captures each loop with a camera capable of taking 10 million frames per second, and he then studies the resulting images.

Among the recent discoveries are that solar corona loops do not appear to be a single structure, but rather are composed of fractally braided strands akin to a large rope.

“If you dissect a piece of rope, you see that it’s made up of braids of individual strands,” says Yang Zhang, graduate student and lead author of the Nature Astronomy paper. “Pull those individual strands apart, and you’ll see that they’re braids of even smaller strands, and so on. Plasma loops appear to work the same way.”

That structure, it turns out, is important to the generation of energetic particles and X-ray bursts associated with solar flares. Plasma is a strong electrical conductor—think of neon signs, which are filled with plasma and light up when electricity passes through. However, when too much current tries to pass through a solar corona loop, the structure is compromised. The loop develops a kink—a corkscrew-shaped instability—and individual strands start to break. Each new broken strand then dumps strain onto the remaining ones.

“Like an elastic band stretched too tight, the loop gets longer and skinnier until the strands just snap,” says Seth Pree, postdoctoral scholar research associate in applied physics and materials science, and co-author of the Nature Astronomy paper.

Studying the process microsecond by microsecond, the team noted a negative voltage spike associated with an X-ray burst at the exact instant a strand broke. This voltage spike is akin to the pressure drop that builds up at the point of constriction in a water pipe. The electric field from this voltage spike accelerates charged particles to extreme energy, then X-rays are emitted when the energetic particles decelerate.

In addition, Zhang combed through pictures of solar flares and was able to document a kink instability similar to the one created in the lab that was associated with a subsequent X-ray burst.

Next, the team plans to explore how separate plasma loops can merge and reorganize into different configurations. They are interested to learn if there are also energy burst events during this type of interaction.

The paper is titled “Generation of laboratory nanoflares from multiple braided plasma loops.” This research was funded by the National Science Foundation and the Advanced Research Projects Agency-Energy (ARPA-E).

Source – Caltech

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Trending

Emirates Emirates
Travel1 year ago

Brewing Excellence’ – Emirates offers a world class range of coffee to connoisseurs

Celebrating International Coffee Day on 1 October, Emirates highlights the wide array of artisan coffee served in Emirates lounges and...

Emirates Emirates
Travel1 year ago

Emirates’ Premium Economy to extend to São

Premium Economy to be introduced on Emirates’ A380 service to São Paulo from 19 November, representing the first in Emirates’...

Metro Metro
Finance1 year ago

Metro Bank Women’s Team of The Year Announced

Best domestic XI selected by PCA MVP Rankings, powered by Argentex Georgia Adams captains the 2023 Metro Bank PCA Women’s...

Honda Honda
Auto1 year ago

Honda and Acura Electric Vehicles Will Have Access to Largest EV Charging Networks in North America Aided by New Agreements with EVgo and Electrify America

New agreements add single-app access to EVgo and Electrify America charging networks, plus roaming partners, through the HondaLink® and Acura...

Oracle Oracle
Technology1 year ago

Oracle Partners with TELMEX-Triara to Become the Only Hyperscaler with Two Cloud Regions in Mexico

Oracle opens new region in Monterrey in partnership with Teléfonos de México (TELMEX-Triara) and continues expanding its global cloud region...

Cosmic web Cosmic web
Education1 year ago

Cosmic Web Lights Up in the Darkness of Space

Like rivers feeding oceans, streams of gas nourish galaxies throughout the cosmos. But these streams, which make up a part...

HP HP
Technology1 year ago

75% of Companies Struggling with IT Operational Challenges in a Hybrid World

HP Inc. (NYSE: HPQ) announced the findings of a new commissioned study, conducted by Forrester Consulting, highlighting the need for...

Visa Visa
Finance1 year ago

Visa Program Combats Friendly Fraud Losses For Small Businesses Globally

Visa Inc. (NYSE:V), a world leader in digital payments, spotlighted the evolution of its dispute program, making it easier for...

Coca cola Coca cola
Food and Beverage1 year ago

New study measures the coca-cola system’s u.s. Economic contributions at $57.8 billion in 2022

In the United States, The Coca‑Cola Company and 64 independently owned bottlers, collectively the Coca‑Cola system, contributed $57.8 billion in...

ANZ ANZ
Finance1 year ago

Court approves ANZ and ASIC settlement relating to credit card cash advance fees being charged in some circumstances

Further to a release on 30 May 2022,[1] ANZ announced that the Federal Court of Australia has approved its agreement...

Translate »