Generative AI for Science
Argonne National Laboratory, in collaboration with Intel and HPE, announced plans to create a series of generative AI models for the scientific research community.
“The project aims to leverage the full potential of the Aurora supercomputer to produce a resource that can be used for downstream science at the Department of Energy labs and in collaboration with others,” said Rick Stevens, Argonne associate laboratory director.
These generative AI models for science will be trained on general text, code, scientific texts and structured scientific data from biology, chemistry, materials science, physics, medicine and other sources.
The resulting models (with as many as 1 trillion parameters) will be used in a variety of scientific applications, from the design of molecules and materials to the synthesis of knowledge across millions of sources to suggest new and interesting experiments in systems biology, polymer chemistry and energy materials, climate science and cosmology. The model will also be used to accelerate the identification of biological processes related to cancer and other diseases and suggest targets for drug design.
Argonne is spearheading an international collaboration to advance the project, including Intel; HPE; Department of Energy laboratories; U.S. and international universities; nonprofits; and international partners, such as RIKEN.
Additionally, Intel and Argonne National Laboratory highlighted installation progress, system specs and early performance results for Aurora:
- Intel has completed the physical delivery of more than 10,000 blades for the Aurora supercomputer.
- Aurora’s full system, built using HPE Cray EX supercomputers, will have 63,744 GPUs and 21,248 CPUs and 1,024 DAOS storage nodes. And it will utilize the HPE Slingshot high-performance Ethernet network.
- Early results show leading performance on real-world science and engineering workloads, with up to 2x performance over AMD MI250 GPUs, 20% improvement over H100 on the QMCPACK quantum mechanical application, and near linear scaling up to hundreds of nodes.2
Aurora is expected to offer more than 2 exaflops of peak double-precision compute performance when launched this year.